Color Confinement and Supersymmetric Features of Hadron Physics from Light-Front Holography and Novel Features of OCD from Light-Front Holography II

$|p>=| u[u d]>$ quark-diquark cluster
with Guy de Tèramond, Hans Günter Dosch, Alexandre Deur, Marina Nielsen, Ivan Schmidt,
F. Navarra, Jennifer Rittenhouse West, G. Miller, Keh-Fei Liu, Iianbo LIu, Liping Zou, S. Groote, Joshua Erlich, S. Koshkarev, Xing-Gang Wu, Sheng-Quan Wang, Cedric Lorcè, R. S. Sufian, R. Vogt, G. Lykasov, S. Gardner, S. Liuti, V. Lyubovitskij, L. di Giustino

Bled Workshop

What Comes
Beyond the Standard Models?

Talk II fuly 8, 202 I

$\lambda=\kappa^{2}$
de Tèramond, Dosch, Lorce', sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Fit to the slope of Regge trajectories, including radial excitations
Same Regge Slope for Meson, Baryons:
Supersymmetric feature of hadron physics

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton predicts the nonperturbative corrections to the $Q C D$ running coupling

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

- Color Confinement
- Origin of the QCD Mass Scale
- Meson and Baryon Spectroscopy
- Universal Reggae Slopes: n and L for Mesons, Baryons, Tetraquarks
- Almost Massless Pion: GMOR Chiral Symmetry Breaking $M_{\pi}^{2} f_{\pi}^{2}=-\frac{1}{2}\left(m_{u}+m_{d}\right)\langle\bar{u} u+\bar{d} d\rangle+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right)$
- QCD Coupling at all Scales $\alpha_{s}\left(Q^{2}\right)$
- Eliminate Scale Uncertainties and Scheme Dependence
- Heavy Quark Distributions
$\mathscr{L}_{Q C D} \rightarrow \psi_{n}^{H}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad$ Valence and Higher Fock States

Supersymmetry in QCD

- A hidden symmetry of Color $\operatorname{SU}(3) \mathrm{c}$ in hadron physics
- QCD: No squarks or gluinos!
- Emerges from Light-Front Holography and Super-Conformal Algebra
- Color Confinement
- Massless Pion in Chiral Limit
de Téramond, Dosch, Lorcé, sjb

Need a First Approximation to QCD

Comparable in simplicity to Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining

Origin of hadronic mass scale

$$
\begin{gathered}
\text { AdS/QCD } \\
\text { Light-Front 7olography } \\
\text { Superconformal Algebra }
\end{gathered}
$$

No parameters except for quark masses!

Evolve in ordinary times

Instant Form
P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

Dúrac's Amazing Idea:
The "Front Form"

Evolve in light-front time!

Casual, Boost Invariant!
Trivial LF Vacuum (up to zero modes)

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& \psi_{n}\left(x_{i}, \vec{k}_{\perp_{i}}, \lambda_{i}\right) \\
& P^{+}, \vec{P}_{\perp} \\
& \text { Dirace Front Form }
\end{aligned}
$$

Dirace Front Form

Dirace Front Form

Measurements of hadron LF wavefunction are at fixed LF time Fixed $\tau=t+z / c$

Like aflash photograph

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Invariant under boosts! Independent of P^{11}

Bound States in Relativistic Quantum Field Theory:
Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau=t+z / c$

Fixed $\tau=t+z / c$

$$
\psi\left(\mathfrak{X}_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian

LF Wavefunction: off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Antu-de Sitter Space

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& P_{n}^{+}, \vec{P}_{\perp} \\
& \\
& \text { Eigenstate of LF Hamiltonian } \\
& \left.H_{i}, \vec{k}_{\perp}, \lambda_{i}\right) \\
& H_{L F}^{Q C D}\left|\Psi_{h}^{n} \vec{k}_{\perp i}=\overrightarrow{0}=\mathcal{M}_{h}^{2}\right| \Psi_{h}>
\end{aligned}
$$

$$
\left|p, J_{z}>=\sum_{n=3} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
$$

Invariant under boosts! Independent of $P^{\prime \prime}$
Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

Two Definitions of Vacuum State

Instant Form: Lowest Energy Eigenstate of InstantForm Hamiltonian

$$
H\left|\psi_{0}>=E_{0}\right| \psi_{0}>, E_{0}=\min \left\{E_{i}\right\}
$$

Eigenstate defined at one time t over all space; Acausal! Frame-Dependent

Front Form: Lowest Invariant Mass Eigenstate of Light-Front Hamiltonian

$$
H_{L F}\left|\psi_{0}>_{L F}=M_{0}^{2}\right| \psi_{0}>_{L F}, M_{0}^{2}=0 .
$$

Frame-independent eigenstate at fixed LF time $\tau=t+z / c$ within causal horizon

Frame-independent description of the causal physical universe!

AdS_{5}

Changes in physical length scale mapped to evolution in the 5th dimension z

Dülaton-Modífied Ads

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement in z
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

Supersymmetric Features of Hadron Physics
from Superconformal Algebra and Light-Front Holography

7 July 202 I

AdS $_{5}$

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of (isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

$$
A d S / C F T
$$

Holographic Mapping of AdS Modes to QCD LFWFs

Drell-Yan-West: Form Factors are

- Integrate Soper formula over angles: Convolution of LFWFs

$$
F\left(q^{2}\right)=2 \pi \int_{0}^{1} d x \frac{(1-x)}{x} \int \zeta d \zeta J_{0}\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x, \zeta)
$$

with $\widetilde{\rho}(x, \zeta)$ QCD effective transverse charge density.

- Transversality variable

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

- Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$
\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)=\zeta Q K_{1}(\zeta Q)
$$

the solution for $J(Q, \zeta)=\zeta Q K_{1}(\zeta Q)$!

Light-Front Holographic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and $A d S$ formula for $E M$ and gravitational current matrix elements and identical equations of motion

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Positive-sign dilaton • de Teramond, sjb AdS Soft-Wall Schrödinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dulaton-Modified AdS ${ }_{5}$
Identical to Single-Variable Light-Front Bound State Equation in ζ !

$$
z \longleftrightarrow \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Ligbt-Front Holograpboy

AdS/QCD

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable ξ

Unique

Confinement Potential!
Conformal symmetry of the action

Confinement scale:

- de Alfaro, Fubini, Furlan: $\kappa \simeq 0.5 \mathrm{GeV}$

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

GeV units external to QCD: Only Ratios of Masses Determined

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

$$
\vec{\zeta}^{2}=\vec{b}_{\perp}^{2} x(1-x)
$$

G. de Teramond, H. G. Dosch, sjb

Prediction from AdS/QCD: Meson LFWF

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q q}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. D. Robertsetal. }
$$

Provides Connection of Confinement to Hadron Structure

$$
\begin{aligned}
\mid \pi^{+}> & =\mid u \bar{d}> \\
m_{u} & =2 \mathrm{MeV} \\
m_{d} & =5 \mathrm{MeV}
\end{aligned}
$$

$$
m_{s}=95 \mathrm{MeV}
$$

$$
\left|D^{+}>=\right| c \bar{d}>
$$

$$
m_{c}=1.25 \mathrm{GeV}
$$

$\left|B^{+}>=\right| u \bar{b}>$ $m_{b}=4.2 \mathrm{GeV}$

Tianbo Liu, Raza Sabbir Sufian, Guy F. de T'eramond, Hans Gunter Dösch, Alexandre Deur, sjb

Polarized distributions for the isovector combination $x\left[\Delta u_{+}(x)-\Delta d_{+}(x)\right]$

$$
d_{+}(x)=d(x)+\bar{d}(x) \quad u_{+}(x)=u(x)+\bar{u}(x)
$$

$$
\Delta q(x)=q_{\uparrow}(x)-q_{\downarrow}(x)
$$

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.
Same slope in n and L !

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

De Tèramond, Dosch, sib

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$$
M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{q}^{2}}{1-x}|X\rangle
$$

from LF Higgs mechanism

Effective mass from $m\left(p^{2}\right)$
Roberts, et al.

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form $V(r)=C r$ for heavy quarks

Harmonic Oscillator $U(\zeta)=\kappa^{4} \zeta^{2}$ LF Potential for relativistic light quarks

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Remarkable Features of Light-Front Schrödinger Equation

- Relativistic, frame-independent

Dynamics + Spectroscopy!

- QCD scale appears - unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L-- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
\bullet Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Supersymmetric Features of Hadron Physics
from Superconformal Algebra and Light-Front Holography

6 July 202 I

LFHQCD: Underlying Principles

- Poincarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \boldsymbol{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: $\mathrm{AdS}_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduces Mass Scale K while retaining the Conformal Invariance of the Action (dAFF)
- Unique Dilaton in $\operatorname{AdS}_{5}: e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

$$
\text { Meson } q \bar{q} \leftrightarrow \text { Baryon } q[q q] \leftrightarrow \text { Tetraquark }[q q][\bar{q} \bar{q}]
$$

Supersymmetric Features of Hadron Physics
from Superconformal Algebra and Light-Front Holography

Superconformal Quantum Mechanics

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \\
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K \\
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D \\
{[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{~K}]=2 \text { i D, }[\mathrm{K}, \mathrm{D}]=-\mathrm{i} \mathrm{~K}} \\
Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}
\end{gathered}
$$

$$
\begin{gathered}
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+} \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} \\
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) \\
\text { Meson Equation } \\
\left(-\partial_{\zeta}^{2}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)+\frac{4 L_{M}^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J} \\
M^{2}\left(n, L_{M}\right)=4 \kappa^{2}\left(n+L_{M}\right) \\
\mathbf{s}=\mathbf{0}, \mathrm{P}=+ \\
\text { Same } \kappa!
\end{gathered}
$$

$S=0$, I= I Meson is superpartner of $S=I / 2$, I=| Baryon Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass! Meson

Baryon

$\phi_{M}, L_{B}+1 \quad \underset{\substack{B+, \\ \text { Baryon }}}{\psi_{B}}$

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

Tetraquark: diquark + antidiquark

$$
\begin{array}{r}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{array}
$$

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1 Light-Front Holography

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

$$
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N_{-}^{7-}
$$

Same slope

$$
N \frac{1}{2}^{5+}(1680)
$$

$$
\frac{M_{\text {meson }}^{2}}{M_{\text {nucleon }}^{2}}=\frac{n+L_{M}}{n+L_{B}+1}
$$

Meson-Baryon
Mass Degeneracy for $L_{M}=L_{B}+1$

Superconformal Algebra 4 -Plet

$$
\begin{gathered}
R_{\lambda}^{\dagger} \underset{(q)}{\bar{q} \rightarrow(q)} \overline{\overline{3}}_{C}
\end{gathered}
$$

Vector ()+ Scalar [] Diquarks

- $M^{2}\left(\mathrm{GeV}^{2}\right)$
 $\rho-\Delta$ superpartner trajectories
 BARYONS
 [qqq]
 $L_{M}=L_{B}+1$
 Dosch, de Teramond, sjb
 L (Orbital Angular Momentum)

Universal Hadronic Decomposition

$$
\frac{\mathcal{M}_{H}^{2}}{\kappa^{2}}=(1+2 n+L)+(1+2 n+L)+(2 L+4 S+2 B-2)
$$

- Universal quark light-front kinetic energy

Equal: $\rightarrow \Delta \mathcal{M}_{L F K E}^{2}=\kappa^{2}(1+2 n+L)$ Virial
Theorem - Universal quark light-front potential energy

$$
\Delta \mathcal{M}_{L F P E}^{2}=\kappa^{2}(1+2 n+L)
$$

- Universal Constant Contribution from AdS and Superconformal Quantum Mechanics

$$
\Delta \mathcal{M}_{\text {spin }}^{2}=2 \kappa^{2}(L+\underset{\star}{2 S}+B-1)
$$

hyperfine spin-spin

Meson

Baryon
Tetraquark
New Organization of the Hadron Spectrum
M. Nielsen,
$\lambda=\kappa^{2}$

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Fit to the slope of Regge trajectories, including radial excitations
Same Regge Slope for Meson, Baryons:
Supersymmetric feature of hadron physics

LF Holography

Baryon LFWFs

Superconformal

Quantum Mechanics

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

- Eigenvalues

Quark Chiral

$$
\int_{0}^{\infty} d \zeta \int_{0}^{1} d x \psi_{+}^{2}\left(\zeta^{2}, x\right)=\int_{0}^{\infty} d \zeta \int_{0}^{1} d x \psi_{-}^{2}\left(\zeta^{2}, x\right)=\frac{1}{2} \quad \text { Symmetry of }
$$

Eigenstate!
Nucleon: Equal Probability for L=0, I
$J^{z}=+1 / 2: \frac{1}{\sqrt{2}}\left[\left|S_{q}^{z}=+1 / 2, L^{z}=0>+\right| S_{q}^{z}=-1 / 2, L^{z}=+1>\right]$
Nucleon spin carried by quark orbital angular momentum

$$
<p+q\left|j^{+}(0)\right| p>=2 p^{+} F\left(q^{2}\right)
$$

Front Form

Drell \&Yan, West Exact LF formula! spectators $\quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}$

Drell, sjb

$$
\begin{array}{ll}
\frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times & \text { Drell, sjb } \\
{\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\llcorner *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
\mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} & \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{array}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment - ->
Nonzero orbital quark angular momentum

Underlying Principles

- Polncarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \boldsymbol{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: $\mathrm{AdS}_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduce mass scale \boldsymbol{K} while retaining the Conformal Invariance of the Action (dAFF)

"Emergent Mass"

- Unique Dilaton in $\mathrm{AdS}_{5}: e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

$$
\text { Meson } q \bar{q} \leftrightarrow \text { Baryon } q[q q] \leftrightarrow \text { Tetraquark }[q q][\bar{q} \bar{q}]
$$

Supersymmetric Features of Hadron Physics
from Superconformal Algebra and Light-Front Holography

Supersymmetry across the light and heavy-light spectrum

Supersymmetry across the light and heavy-light spectrum

Superpartners for states with one c quark

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

Heavy-light and heavy-heavy hadronic sectors

- Extension to the heavy-light hadronic sector
[H. G. Dosch, GdT, S. J. Brodsky, PRD 92, 074010 (2015), PRD 95, 034016 (2017)]
- Extension to the double-heavy hadronic sector
[M. Nielsen and S. J. Brodsky, PRD, 114001 (2018)]
[M. Nielsen, S. J. Brodsky, GdT, H. G. Dosch, F. S. Navarra, L. Zou, PRD 98, 034002 (2018)]
- Extension to the isoscalar hadronic sector
[L. Zou, H. G. Dosch, GdT,S. J. Brodsky, arXiv:1901.11205 [hep-ph]]

Running Coupling from Modified AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
e^{\phi(z)}=e^{+\kappa^{2} z^{2}} \quad S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \text { or } g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Bjorken sum rule defines effective charge

$\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any $p Q C D$ scheme
\bullet Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\mathbf{I}}$

Running Coupling from AdS/QCD

Bjorken sum rule:

$$
\frac{\alpha_{g_{1}}\left(Q^{2}\right)}{\pi}=1-\frac{6}{g_{A}} \int_{0}^{1} d x g_{1}^{p-n}\left(x, Q^{2}\right)
$$

Effective coupling in LFHQCD (valid at low- Q^{2})

$$
\alpha_{g_{1}}^{A d S}\left(Q^{2}\right)=\pi \exp \left(-Q^{2} / 4 \kappa^{2}\right)
$$

Imposing continuity for α and its first derivative
A. Deur, S.J. Brodsky, G.F. de Téramond, Phys. Lett. B 750, 528 (2015); J. Phys. G 44, 105005 (2017).

Analytic, defined at all scales, IR Fixed Point

Bjorken sum $\Gamma_{1}{ }^{p-n}$ measurements

Low \mathbf{Q}^{2} limit

A. Deur

At $\mathrm{Q}^{2}=0$, a sum rule related to the Bjorken sum rule exists: the Gerasimov-Drell-Hearn (GDH) sum rule:

At $\mathrm{Q}^{2}=0, \mathrm{GDH}$ sum rule:

anomalous magnetic moment
$\Rightarrow \mathrm{Q}^{2}=0$ constraints:

$$
\Rightarrow\left\{\begin{array}{l}
\alpha_{\mathrm{g} 1}=\pi \\
\frac{\mathrm{d} \alpha_{\mathrm{g} 1}}{\mathrm{dQ}^{2}}=\frac{3 \pi}{4 \mathrm{~g}_{\mathrm{A}}}\left(\frac{\kappa_{\mathrm{n}^{2}}}{\mathrm{M}_{\mathrm{n}}{ }^{2}}-\frac{\kappa_{\mathrm{p}^{2}}}{\mathrm{M}_{\mathrm{p}}{ }^{2}}\right)
\end{array}\right.
$$

First experimental evidence of nearly conformal behavior (i.e. no Q^{2}-dependence) of QCD at low Q^{2}.
$m_{\rho}=\sqrt{2} \kappa$

$$
m_{p}=2 \kappa
$$

All-Scale QCD Coupling

Deur, de Tèramond, sjb Fit to $\mathrm{Bj}+\mathrm{DHG}$ Sum Rules:

Process-independent strong running coupling

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Comparison for $x q(x)$ in the proton from LFHQCD (red bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6] (cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD results are evolved from the initial scale $\mu_{0}=1.06 \pm 0.15 \mathrm{GeV}$.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD
Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur PHYSICAL REVIEW LETTERS 120, 182001 (2018)

Polarized GPDs and PDFs (HLFHS Collaboration, 2019)

- Separation of chiralities in the AdS action allows computation of the matrix elements of the axial current including the correct normalization, once the coefficients c_{τ} are fixed for the vector current
- Helicity retention between quark and parent hadron (pQCD prediction): $\lim _{x \rightarrow 1} \frac{\Delta q(x)}{q(x)}=1$
- No spin correlation with parent hadron: $\lim _{x \rightarrow 0} \frac{\Delta q(x)}{q(x)}=0$

Other Consequences of $[u d]_{\overline{3}_{C}, I=0, J=0}$ diquark cluster

QCD Hidden-Color Hexadiquark in the Core of Nuclei

J. Rittenhouse West, G. de Teramond, A. S. Goldhaber, I. Schmidt, sjb
$\left|\Psi_{H D Q}>=\right|[u d][u d][u d][u d][u d][u d]>$
mixes with
${ }^{4} H e \mid n p n p>$
Increases alpha binding energy, EMC effects

Diquarks Can Dominate Five-Quark Fock State of Proton

$$
|p>=\alpha|[u d] u>+\beta \mid[u d][u d] \bar{d}>
$$

J. Rittenhouse West, sjb (to be published)

Natural explanation why $\bar{d}(x) \gg \bar{u}(x)$ in proton

Gluon matter distribution in the proton and pion from extended holographic light-front QCD

Guy F. de Téramond, ${ }^{1}$ H. G. Dosch, ${ }^{2}$ Tianbo Liu, ${ }^{3, *}$
Raza Sabbir Sufian, ${ }^{4,5, \dagger}$ Stanley J. Brodsky, ${ }^{6}$ and Alexandre Deur ${ }^{5}$
(HLFHS Collaboration)

$$
\left\langle P^{\prime}\right| T_{\mu}^{\nu}|P\rangle=\left(P^{\nu} P_{\mu}^{\prime}+P_{\mu} P^{\prime \nu}\right) A\left(Q^{2}\right)
$$

Gluon gravitational form factor $A^{g}\left(Q^{2}\right)$ of the proton (red) and the pion (blue). The dashed curves indicate the uncertainty from the variation of λ_{g} by $\pm 5 \%$. The value $A^{g}(0)$ corresponds to the momentum fraction carried by gluons: 0.225 for the proton and 0.429 for the pion.

Gluon matter distribution in the proton and pion from extended holographic light-front QCD

Guy F. de Téramond, ${ }^{1}$ H. G. Dosch, ${ }^{2}$ Tianbo Liu, ${ }^{3, *}$
Raza Sabbir Sufian, ${ }^{4,5, \dagger}$ Stanley J. Brodsky, ${ }^{6}$ and Alexandre Deur ${ }^{5}$ (HLFHS Collaboration)

$$
\left\langle r_{g}^{2}\right\rangle=\left.\frac{6}{A^{g}(0)} \frac{d A^{g}(t)}{d t}\right|_{t=0}
$$

$$
<r_{g}>_{p}=0.34 \mathrm{fm} \quad<r_{g}>_{\pi}=0.31 \mathrm{fm}
$$

Momentum fraction carried by gluons in the proton:
$A^{g}(0)_{p}=0.225$
Momentum fraction carried by gluons in the pion: $A^{g}(0)_{\pi}=0.429$

Compare with the gluonic radius

The pion's electromagnetic radius is 0.657 fm

The proton's electromagnetic radius is 0.833 fm

Unpolarized gluon distribution in the proton (top panel) and pion (bottom panel) from HLFQCD and comparison with global fits. The figures on left and right are the same distributions with different scales for $x g(x)$ and x to enhance the view of the small and large- x regions respectively.

Gluon matter distribution in the proton and pion from extended holographic light-front QCD

Guy F. de Téramond, ${ }^{1}$ H. G. Dosch, ${ }^{2}$ Tianbo Liu, ${ }^{3, *}$
Raza Sabbir Sufian, ${ }^{4,5, \dagger}$ Stanley J. Brodsky, ${ }^{6}$ and Alexandre Deur ${ }^{5}$
(HLFHS Collaboration)

Longitudinal dynamics and chiral symmetry breaking in holographic light-front QCD

Guy F. de Téramond ${ }^{1, *}$ and Stanley J. Brodsky ${ }^{2, \dagger}$
${ }^{1}$ Laboratorio de Física Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
${ }^{2}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA

(Dated: April 18, 2021)
The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal dynamics with its chiral limit protected by the superconformal algebraic structure which governs its transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confinement strength in this direction: It is also responsible for most of the light meson ground state mass consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the breaking of chiral symmetry are found to be different manifestations of the same underlying dynamics like in 't Hooft large $N_{C} \mathrm{QCD}(1+1)$ model.

Transverse and Longitudinal LF Confinement

$$
M_{H}^{2}=M_{\|}^{2}+M_{\perp}^{2}
$$

$$
\begin{aligned}
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U_{\perp}(\zeta)\right) \phi(\zeta) & =M_{\perp}^{2} \phi(\zeta) \\
\left(\frac{m_{q}^{2}}{x}+\frac{m_{\bar{q}}^{2}}{1-x}+U_{\|}(x)\right) \chi(x) & =M_{\|}^{2} \chi(x)
\end{aligned}
$$

Longitudinal contribution for nonzero quark mass
S. S. Chabysheva and J.R.Hiller,

Constraint: Rotational symmetry in non-relativistic heavy-quark limit.

Transverse Confinement

$$
\begin{gathered}
\left.-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U_{\perp}(\zeta)\right) \phi(\zeta)=M_{\perp}^{2} \phi(\zeta) \\
U_{\perp}(\zeta)=\lambda^{2} \zeta^{2}+2 \lambda(J-1) . \quad \zeta^{2}=b_{\perp}^{2} x(1-x) \\
M_{\perp}^{2}(n, J, L)=4 \lambda\left(n+\frac{J+L}{2}\right)
\end{gathered}
$$

and eigenfunctions
de Teramond, Dosch, sjb

$$
\phi_{n, L}(\zeta)=\lambda^{(1+L) / 2} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\lambda \zeta^{2} / 2} L_{n}^{L}\left(\lambda \zeta^{2}\right)
$$

$$
M_{\pi}=0 \text { in chiral }\left(m_{q}=0\right) \text { limit }
$$

Longitudinal Confinement

$$
\begin{aligned}
& \left(\frac{m_{q}^{2}}{x}+\frac{m_{\bar{q}}^{2}}{1-x}+U_{\|}(x)\right) \chi(x)=M_{\|}^{2} \chi(x) \\
& U_{\|}(x)=-\sigma^{2} \partial_{x}\left(x(1-x) \partial_{x}\right) \quad \text { Li, Maris, Zhao,Vary } \\
& U_{\|}=\sigma^{2} x(1-x) \tilde{z}^{2}
\end{aligned}
$$

Ioffe length \tilde{z} : conjugate to LF $x=\frac{k^{+}}{P^{+}}$
G.A. Miller, sjb

$$
\frac{\gamma^{+} \gamma^{+}}{k^{+}} \text {LF interaction in } A^{+}=0 \text { gauge }
$$

de Teramond, sjb
Same potential: t' Hooft Equation QCD $(1+1)_{N_{C} \rightarrow \infty}$

Longitudinal Confinement

$$
\begin{gathered}
U_{\|}=\sigma^{2} x(1-x) \tilde{z}^{2} \\
\left(\frac{m_{q}^{2}}{x}+\frac{m_{\bar{q}}^{2}}{1-x}\right) \chi(x)+\frac{g^{2} N_{C}}{\pi} P \int_{0}^{1} d x^{\prime} \frac{\chi(x)-\chi\left(x^{\prime}\right)}{\left(x-x^{\prime}\right)^{2}} \\
\sigma=g \sqrt{\pi N_{C} / 3}=M_{\|}^{2} \chi(x), \\
\chi(x) \sim x^{\frac{2 m_{q}}{\sigma}}(1-x)^{\frac{2 m_{\bar{q}}}{\sigma}} \\
M_{\pi}^{2}=g \sqrt{\pi N_{C} / 3}\left(m_{u}+m_{d}\right)+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right) \\
\text { GMOR relation } \quad \text { de Teramond, sjb }
\end{gathered}
$$

$$
M_{\pi}^{2}=\sigma\left(m_{u}+m_{d}\right)+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right),
$$

in the limit $m_{u}, m_{d} \rightarrow 0$. It has the same linear dependence in the quark mass as the Gell-Mann-Oakes-Renner (GMOR) relation

$$
M_{\pi}^{2} f_{\pi}^{2}=-\frac{1}{2}\left(m_{u}+m_{d}\right)\langle\bar{u} u+\bar{d} d\rangle+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right)
$$

where the "vacuum condensate" $\langle\bar{\psi} \psi\rangle \equiv \frac{1}{2}\langle\bar{u} u+\bar{d} d\rangle$ plays the role of a chiral order parameter. The same linear dependence arises for the $(3+1)$ effective LF Hamiltonian, since the constraints from the superconformal algebra require that the contribution to the pion mass from the transverse LF dynamics is identically zero.

Interpret $<\bar{\psi} \psi>$ as an in-hadron condensate

Expand in complete orthonormal basis

$$
\begin{aligned}
& \chi_{\kappa}^{\alpha, \beta}(x)=N x^{\alpha / 2}(1-x)^{\beta / 2} P_{\kappa}^{(\alpha, \beta)}(1-2 x) . \\
& M_{\|}^{2}=\sigma^{2} \int_{0}^{1} d x \chi(x)\left(-\partial_{x}\left(x(1-x) \partial_{x}\right)\right. \\
& \left.+\frac{1}{4}\left[\frac{\alpha^{2}}{x}+\frac{\beta^{2}}{1-x}\right]\right) \chi(x)=\sigma^{2} \sum_{\kappa} C_{\kappa}^{2} \nu^{2}(\kappa, \alpha, \beta),
\end{aligned}
$$

where $\nu^{2}(\kappa, \alpha, \beta)=\frac{1}{4}(\alpha+\beta+2 \kappa)(2+\alpha+\beta+2 \kappa)$, with $\alpha=2 m_{q} / \sigma$ and $\beta=2 m_{\bar{q}} / \sigma$.

Mode expansion

Convergence of ground state meson masses with increasing κ The horizontal grey lines in the figure are the observed masses.

Light-front distribution amplitudes $X(x)$ for the π, K, D and J / Ψ mesons: the red curve is the invariant mass result, dot dashed black curves are individual modes in the expansion (16), dashed blue curve represent the sum of modes in the figure. Notice that the J / Ψ result is well described by the zero mode alone.

The Onset of Color Transparency in Holographic Light-Front QCD

with Guy F. de Téramond

Color Transparency

$$
\left.\sigma\left(e+A \rightarrow e^{\prime}+p+X\right) \rightarrow Z \frac{d \sigma}{d t}\left(e p \rightarrow e^{\prime} p^{\prime}\right)\right) \text { at high } Q^{2}
$$

$$
e+A \rightarrow e^{\prime}+p+X
$$

A

- QCD: Gauge theory properties and quantum coherence
- Small-size color dipole moment interacts weakly in nuclei

Color transparency fundamental prediction of QCD

- Hadron fluctuates to small transverse size (quantum mechanics)
- Maintains this small size as it propagates out of the nucleus (relativity)
- Experiences reduced attenuation in nucleus, color screened (strong force)

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting
 hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

$$
T_{A}=\frac{\sigma_{A}}{A \sigma_{N}} \begin{aligned}
& \text { (nuclear cross section) } \\
& \begin{array}{l}
\text { (free nucleon } \\
\text { cross section) }
\end{array}
\end{aligned}
$$

Color Transparency

Mueller, sjb

Bertsch, Gunion, Goldhaber, sjb

$\frac{d \sigma}{d t}(e A \rightarrow e p(A-1))=Z \frac{d \sigma}{d t}(e p \rightarrow e p) \quad$ at high momentum transfer

- Fundamental test of gauge theory in hadron physics
- Small color dipole moment interacts weakly in nuclei
- Complete coherence at high energies
- Many tests in hard exclusive processes
- Clear Demonstration of CT from Diffractive Di-Jets
- Explains Baryon Anomaly at RHIC
- Small color dipole moment interacts weakly in nuclei

CLAS E02-110 rho electro-production A(e, $\left.e^{\prime} \rho^{0}\right)$

[^0]

Ruling out color transparency in quasi-elastic ${ }^{12} \mathbf{C}\left(\mathbf{e}, \mathbf{e}^{\prime} \mathbf{p}\right)$ up to Q^{2} of $14.2(\mathrm{GeV} / \mathrm{c})^{2}$ Hall C Collaboration

Leading-Twist PQCD Factorization for form factors, exclusive amplitudes

Lepage, sjb

"Counting Rules" Farrar and sjb; Muradyan, Matveev,Tavkelidze

$$
\begin{gathered}
\frac{d \sigma}{d t}(A+B \rightarrow C+D)=\frac{F(t / s)}{s^{n_{t o t}-2}} \\
n_{t o t}=n_{A}+n_{B}+n_{C}+n_{D}
\end{gathered}
$$

e.g. $n_{t o t}-2=n_{A}+n_{B}+n_{C}+n_{D}-2=10$ for $p p \rightarrow p p$

Predict: $\quad \frac{d \sigma}{d t}(p+p \rightarrow p+p)=\frac{F\left(\theta_{C M}\right)}{s^{10}}$

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

$s\left(G e V^{2}\right)$
P.V. LANDSHOFF and J.C. POLKINGHORNE

Deuteron Photodisintegration \& Dimensional Counting Rules

$$
\begin{aligned}
& s^{n_{t o t}-2 \frac{d \sigma}{d t}}(A+B \rightarrow C+D)= \\
& \mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right) \\
& s^{11} \frac{d \mathrm{\sigma}}{d t}(\gamma d \rightarrow n p)=F\left(\theta_{C M}\right) \\
& n_{\text {tot }}-2= \\
& (1+6+3+3)-2=11 \\
& F_{D}\left(Q^{2}\right) \sim\left[\frac{1}{Q^{2}}\right]^{5}
\end{aligned}
$$

Scaling is a manifestation of asymptotically free hadron interactions

From dimensional arguments at high energies in binary reactions:

CONSTITUENT COUNTING RULES

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153 Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719

Counting Rules:

$$
\begin{aligned}
& q(x) \sim(1-x)^{2 n_{\text {spect }}-1} \text { for } x \rightarrow 1 \\
& F\left(Q^{2}\right) \sim\left(\frac{1}{Q^{2}}\right)^{(n-1)} \\
& \frac{d \sigma}{d t}(A B \rightarrow C D) \sim \frac{F(t / s)}{s^{\left(n_{\text {participants }}-2\right)}} \\
& n_{\text {participants }}=n_{A}+n_{B}+n_{C}+n_{D}
\end{aligned}
$$

Exclusive-Inclusive Connection Gribov-Lipatov crossing

$$
\frac{d \sigma}{d^{3} p / E}(A B \rightarrow C X) \sim F(\widehat{t} / \widehat{s}) \times \frac{\left(1-x_{R}\right)^{\left(2 n_{\text {spectators }}-1\right)}}{\left(p_{T}^{2}\right)^{\left(n_{\text {participipants }}-2\right)}}
$$

$$
\begin{gathered}
F\left(q^{2}\right)=\quad \text { Drell-Yan-West Formula in Impact Space } \\
\sum_{n} \prod_{i=1}^{n} \int d x_{i} \int \frac{d^{2} \mathbf{k}_{\perp i}}{2(2 \pi)^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n} \mathbf{k}_{\perp j}\right) \\
\sum_{j} e_{j} \psi_{n}^{*}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{n}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right), \\
=\sum_{n} \prod_{i=1}^{n-1} \int d x_{j} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{i=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2} \\
\sum_{i=1}^{n} x_{i}=1 \text { and } \sum_{i=1}^{n} \mathbf{b}_{\perp i}=0 . \\
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \mathbf{a}_{\perp} e^{i \mathbf{a}_{\perp} \cdot \mathbf{q}_{\perp}} q\left(x, \mathbf{a}_{\perp}\right),
\end{gathered}
$$

where $\mathbf{a}_{\perp}=\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}$ is the x-weighted transverse position coordinate of the $n-1$ spectators.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD

Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Alexandre Deur, SJB (HLFHS Collaboration)

$$
\begin{aligned}
& F_{\tau}(t)=\frac{1}{N_{\tau}} B\left(\tau-1, \frac{1}{2}-\frac{t}{4 \lambda}\right), \\
& N_{\tau}=B(\tau-1,1-\alpha(0)) \\
& B(u, v)=\int_{0}^{1} d y y^{u-1}(1-y)^{v-1}=[\Gamma(u) \Gamma(v) / \Gamma(u+v)] \\
& F_{\tau}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{M_{0}^{2}}\right)\left(1+\frac{Q^{2}}{M_{1}^{2}}\right) \cdots\left(1+\frac{Q^{2}}{M_{\tau-2}^{2}}\right)} \\
& F_{\tau}\left(Q^{2}\right) \sim\left(\frac{1}{Q^{2}}\right)^{\tau-1} \\
& M_{n}^{2}=4 \lambda\left(n+\frac{1}{2}\right), n=0,1,2, \ldots, \tau-2, \quad M_{0}=m_{\rho} \\
& \sqrt{\lambda}=\kappa=\frac{m_{\rho}}{\sqrt{2}}=0.548 \mathrm{GeV} \quad \frac{1}{2}-\frac{t}{4 \lambda}=1-\alpha_{R}(t) \\
& \alpha_{R}(t)=\rho \text { Regge Trajectory }
\end{aligned}
$$

$$
\begin{aligned}
& F\left(q^{2}\right)= \\
& \sum_{n} \prod_{j=1}^{n-1} \int d x_{j} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2} \\
& \sum_{i} x_{i}=1
\end{aligned}
$$

Color Transparency is controlled by the transverse-spatial size \vec{a}_{\perp}^{2} and its dependence on the momentum transfer $Q^{2}=-t$:

Light-Front Holography:
For large Q^{2} :
$\left\langle\mathbf{a}_{\perp}^{2}(t)\right\rangle_{\tau}=\frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)}$

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
$$

The scale Q_{τ}^{2} required for Color Transparency grows with twist τ

$$
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \mathbf{a}_{\perp} e^{i \mathbf{a}_{\perp} \cdot \mathbf{q}_{\perp}} q\left(x, \mathbf{a}_{\perp}\right)
$$

Counting rules:

$$
\begin{gathered}
q_{\tau}(x) \propto(1-x)^{2 n_{s}-1}=(1-x)^{2 \tau-3} \\
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
\end{gathered}
$$

Transverse size a_{\perp} decreases with momentum transfer Q, grows with the number of spectators plus the internal orbital angular momentum L

$$
\text { Twist } \tau=n+L
$$

$$
\left\langle\mathbf{a}_{\perp}^{2}(t)\right\rangle_{\tau}=\frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)},
$$

Transverse size depends on internal dynamics
Transparency controlled by transverse size

$$
\begin{aligned}
& F\left(q^{2}\right)= \\
& \sum_{n} \prod_{j=1}^{n-1} \int d x_{j} \int d^{2} \mathbf{b}_{\perp j} \exp \left(i \mathbf{q}_{\perp} \cdot \sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right)\left|\psi_{n}\left(x_{j}, \mathbf{b}_{\perp j}\right)\right|^{2} \quad \vec{a}_{\perp} \equiv \sum_{j=1}^{n-1} x_{j} \overrightarrow{b_{\perp j}}
\end{aligned}
$$

$$
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \mathbf{a}_{\perp} e^{i \mathbf{a}_{\perp} \cdot \mathbf{q}_{\perp}} q\left(x, \mathbf{a}_{\perp}\right), \quad x=1-\sum_{j=1}^{n-1} x_{j}
$$

Define mean transverse size as a function of x

$$
\sigma(x)=<\tilde{\mathbf{a}}_{\perp}^{2}(x)>=\frac{\int d^{2} \mathbf{a}_{\perp} \mathbf{a}_{\perp}^{2} q\left(x, \mathbf{a}_{\perp}\right)}{\int d^{2} \mathbf{a}_{\perp} q\left(x, \mathbf{a}_{\perp}\right)}
$$

Mean transverse size as a function of Q and Twist

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
$$

Transparency scale Q increases with twist
$\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle=-\frac{4}{F\left(Q^{2}\right)} \frac{d}{d Q^{2}} F\left(Q^{2}\right)$

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
$$

$Q^{2} \mathrm{GeV}^{2}$
Light-Front Holography

$$
\left\langle\mathbf{a}_{\perp}^{2}\left(Q^{2}\right)\right\rangle=-\frac{4}{F\left(Q^{2}\right)} \frac{d}{d Q^{2}} F\left(Q^{2}\right)
$$

Proton has equal probability for $\tau=3$ and $\tau=4$

CLAS E02-110 rho electro-production A(e, $\left.e^{\prime} \rho^{0}\right)$

[^1]$$
<a_{\perp}^{2}\left(Q^{2}=4 \mathrm{GeV}^{2}\right)>_{\tau=2} \simeq<a_{\perp}^{2}\left(Q^{2}=14 \mathrm{GeV}^{2}\right)>_{\tau=3} \simeq<a_{\perp}^{2}\left(Q^{2}=22 \mathrm{GeV}^{2}\right)>_{\tau=4} \simeq 0.24 \mathrm{fm}^{2}
$$
5% increase for T_{π} in ${ }^{12} \mathrm{C}$ at $Q^{2}=4 \mathrm{GeV}^{2}$ implies 5% increase for T_{p} at $Q^{2}=18 \mathrm{GeV}^{2}$

- Transverse-impact size dependence on $t=-Q^{2}$ from expectation value of the profile function $\sigma(x)$

$$
\begin{aligned}
\langle\sigma(t)\rangle_{\tau} & =\frac{\int d x \sigma(x) \rho_{\tau}(x, t)}{\int d x \rho_{\tau}(x, t)} \\
& =\frac{1}{F_{\tau}(t)} \frac{d}{d t} F_{\tau}(t)=\frac{1}{4 \lambda}[\psi(\tau-\alpha(t))-\psi(1-\alpha(t)]
\end{aligned}
$$

with ψ the digamma function

- For integer twist $\tau=N$

$$
\begin{aligned}
\left\langle a_{\perp}^{2}(t)\right\rangle_{\tau} & \equiv 4\langle\sigma(t)\rangle_{\tau} \\
& =\frac{1}{\lambda} \sum_{j=1}^{\tau-1} \frac{1}{j-\alpha(t)}
\end{aligned}
$$

- At large values $t=-Q^{2}$

$$
\left\langle a_{\perp}^{2}\left(Q^{2}\right)\right\rangle_{\tau} \rightarrow \frac{4(\tau-1)}{Q^{2}}
$$

- The Q^{2} required to contract all of the valence constituents of to a color-singlet domain of given transverse size, grows as the number of spectators and depends also on the properties of the quark current

Transparency scale Q increases with twist

Light-Front Holography

5% increase for T_{π} in ${ }^{12} C$ at $Q^{2}=4 G e V^{2}$ implies 5% increase for T_{p} at $Q^{2}=18 G e V^{2}$

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting
 hadronic picture \rightarrow arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_{A}, as a function of the momentum transfer, Q^{2}

$$
T_{A}=\frac{\sigma_{A}}{A \sigma_{N}} \begin{aligned}
& \text { (nuclear cross section) } \\
& \begin{array}{l}
\text { (free nucleon } \\
\text { cross section) }
\end{array}
\end{aligned}
$$

Two-Stage Color Transparency

$$
14 G e V^{2}<Q^{2}<20 G e V^{2}
$$

If Q^{2} is in the intermediate range, then the twist-3 state will propagate through the nuclear medium with minimal absorption, and the protons which survive nuclear absorption will only have $\mathrm{L}=0$ (twist-3).
The twist-4 $\mathrm{L}=1$ state which has a larger transverse size will be absorbed.
Thus 50% of the events in this range of Q^{2} will have full color transparency and 50% of the events will have zero color transparency ($\mathrm{T}=0$).
The ep $\rightarrow \mathrm{e}^{\prime} \mathrm{p}^{\prime}$ cross section will have the same angular and Q^{2} dependence as scattering of the electron on an unphysical proton which has no Pauli form factor.

$$
Q^{2}>20 G e V^{2}
$$

However, if the momentum transfer is increased to $\mathrm{Q}^{2}>20 \mathrm{GeV}^{2}$, all events will have full color transparency, and the ep $\rightarrow \mathrm{e}^{\prime} \mathrm{p}$ ' cross section will have the same angular and Q^{2} dependence as scattering of the electron on a physical proton eigenstate, with both Dirac and Pauli form factor components.

Color Transparency and Light-Front Holography

- Essential prediction of QCD
- LF Holography: Spectroscopy, dynamics, structure
- Transverse size predicted by LF Holography as a function of Q
- Q scale for CT increases with twist, number of constituents
- Two-Stage Proton Transparency: Equal probability L=o,i
- No contradiction with present experiments
$Q_{0}^{2}(p) \simeq 18 \mathrm{GeV}^{2}$ vs. $Q_{0}^{2}(\pi) \simeq 4 \mathrm{GeV}^{2}$ for onset of color transparency in ${ }^{12} \mathrm{C}$

$$
Q_{0}^{2}(d) \simeq 40 G e V^{2}
$$

Two Components (separate evolution):

$$
c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}
$$

Hoyer, Peterson, Sakai, sjb S. Gardner, sjb

Proton Self Energy Intrinsic Heavy Quarks

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$
Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Rigorous OPE Analysis
Collins, Ellis, Gunion, Mueller, sjb M. Polyakov, et al.

Proton 5-quark Fock State: Intrinsic Heavy Quarks

UseAdS/QCD LFWF
$x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}$
Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}}$
$g \rightarrow Q \bar{Q}$ at low $x:$ High \mathcal{M}^{2}

QCD predicts Intrinsic Heavy Quarks at high x!

Minimal offshellness!

Probability $(Q C D) \propto \frac{1}{M_{q}^{2}}$

Collins, Ellis, Gunion, Mueller, sjb Polyakov, et al.

Coalesece of comovers produces high XF heavy hadrons

High XF hadrons combine most of the comovers, fewest spectators

LFWF maximum at equal rapidity maximum at minimal invariant mass
\rightarrow Asymmetries of leading hadrons
Spectator counting rules $\quad \frac{d N}{d x_{F}} \propto\left(1-x_{F}\right)^{2 n_{\text {spect }}-1}$
Coalescence of Comoving Charm and Valence Quarks
Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High $x_{F} \quad$ Vogt, sjb

Stan Brodsky and Light-Front Holography

| 9 April 202|

Barger, Halzen, Keung PRD 25 (I98I)

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State!

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{S}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production at high X_{F} (Kopeliovich, Schmidt, Soffer, Goldhaber, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests (Gardener, Karliner, ..)

Review: G. Lykasov, et al

Properties of Non-Perturbative Five-Quark Fock-State

- Dominant configuration: mininum offshell, same rapidity
- Heavy quarks have most of the LF momentum $\quad<x_{Q}>\propto \sqrt{m_{Q}^{2}+k_{\perp}^{2}}$ Fixed $\tau=t+z / c$
- Correlated with proton quantum numbers
- Duality with meson-baryon channels

- Strangeness, charm asymmetry at $\boldsymbol{x}>\boldsymbol{0} . \boldsymbol{I}$

$$
s_{p}(x) \neq \bar{s}_{p}(x) \quad c_{p}(x) \neq \bar{c}_{p}(x)
$$

Intrinsic Heavy Quark Contribution to Inclusive Higgs Production

Measure $H \rightarrow Z Z^{*} \rightarrow \mu^{+} \mu^{-} \mu^{+} \mu^{-}$.

Constraints on charm-anticharm asymmetry in the nucleon from lattice QCD

Raza Sabbir Sufian ${ }^{\text {a }}$, Tianbo Liu ${ }^{\text {a }}$, Andrei Alexandru ${ }^{\text {b,c }}$, Stanley J. Brodsky ${ }^{\text {d }}$, Guy F. de Téramond ${ }^{\text {e }}$, Hans Günter Dosch ${ }^{\text {f }}$, Terrence Draper ${ }^{\mathrm{g}}$, Keh-Fei Liu ${ }^{\mathrm{g}}$, Yi-Bo Yang ${ }^{\text {h }}$
${ }^{a}$ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
${ }^{b}$ Department of Physics, The George Washington University, Washington, DC 20052, USA
${ }^{c}$ Department of Physics, University of Maryland, College Park, MD 20742, USA
${ }^{d}$ SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
${ }^{e}$ Laboratorio de Física Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
${ }^{f}$ Institut für Theoretische Physik der Universität, D-69120 Heidelberg, Germany ${ }^{g}$ Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
${ }^{h}$ CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

We present the first lattice QCD calculation of the charm quark contribution to the nucleon electromagnetic form factors $G_{E, M}^{c}\left(Q^{2}\right)$ in the momentum transfer range $0 \leq Q^{2} \leq 1.4 \mathrm{GeV}^{2}$. The quark mass dependence, finite lattice spacing and volume corrections are taken into account simultaneously based on the calculation on three gauge ensembles including one at the physical pion mass. The nonzero value of the charm magnetic moment $\mu_{M}^{c}=-0.00127(38)_{\text {stat }}(5)_{\mathrm{sys}}$, as well as the Pauli form factor, reflects a nontrivial role of the charm sea in the nucleon spin structure. The nonzero $G_{E}^{c}\left(Q^{2}\right)$ indicates the existence of a nonvanishing asymmetric charm-anticharm sea in the nucleon. Performing a nonperturbative analysis based on holographic QCD and the generalized Veneziano model, we study the constraints on the [$c(x)-\bar{c}(x)]$ distribution from the lattice QCD results presented here. Our results provide complementary information and motivation for more detailed studies of physical observables that are sensitive to intrinsic charm and for future global analyses of parton distributions including asymmetric charm-anticharm distribution.

Keywords: Intrinsic charm, Form factor, Parton distributions, Lattice QCD, Light-front holographic QCD, JLAB-THY-20-3155, SLAC-PUB-17515

The distribution function $x[c(x)-\bar{c}(x)]$ obtained from the LFHQCD formalism using the lattice QCD input of charm electromagnetic form factors $G_{E, M}^{c}\left(Q^{2}\right)$. The outer cyan band indicates an estimate of systematic uncertainty in the $x[c(x)-\bar{c}(x)]$ distribution obtained from a variation of the hadron scale κ_{c} by 5%.

Strange and Antistrange Distributions

Input: nonzero lattice axial form factor

Duality with $\mid K \Lambda>$ meson-nucleon fluctuations

Phys. Rev. D 98, 114004 (2018).
R. S. Sufian, T.Liu, de Teramond, Dosch, Deur, Islam, Ma, sji

Challenge: Compute Hadron Structure,
 Spectroscopy, and Dynamics from QCD!

- Color Confinement
- Origin of the QCD Mass Scale
- Meson and Baryon Spectroscopy
- Exotic States: Tetraquarks, Pentaquarks, Gluonium,
- Universal Regge Slopes: n, L, Mesons and Baryons
- Almost Massless Pion: GMOR Chiral Symmetry Breaking $M_{\pi}^{2} f_{\pi}^{2}=-\frac{1}{2}\left(m_{u}+m_{d}\right)\langle\bar{u} u+\bar{d} d\rangle+\mathcal{O}\left(\left(m_{u}+m_{d}\right)^{2}\right)$
- QCD Coupling at all Scales $\alpha_{s}\left(Q^{2}\right)$
- Eliminate Scale Uncertainties and Scheme Dependence
$\mathscr{L}_{Q C D} \rightarrow \psi_{n}^{H}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad$ Valence and Higher Fock States

Light-Front Holography: First Approximation to QCD

- Color Confinement, Analytic form of confinement potential
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-Fubini-Furlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR-like relation
- QCD coupling at all scales
- Nonperturbative mass scale
- Hadron Spectroscopy-Regge Trajectories for mesons, baryons with universal slopes in \mathbf{n}, L
- Supersymmetric 4-Plet: Meson-Baryon -Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Quark and Gluon Structure Functions
- New Hadronic Observables; gluonic radii and gluonic momentum fraction
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

> Stan Brodsky Bled Workshop

> Supersymmetric Features of Hadron Physics
> from Superconformal Algebra and Light-Front Holography

LFHQCD: Underlying Principles

- Poincarè Invariance: Independent of the observer's Lorentz frame: Quantization at Fixed Light-Front Time \boldsymbol{T}
- Causality: Information within causal horizon: Light-Front
- Light-Front Holography: AdS $_{5}=\operatorname{LF}(3+I)$

$$
z \leftrightarrow \zeta \text { where } \zeta^{2}=b_{\perp}^{2} x(1-x)
$$

- Introduce Mass Scale \boldsymbol{K} while retaining the Conformal Invariance of the Action (dAFF)
- Unique Dilaton in AdS $_{5}: e^{+\kappa^{2} z^{2}}$
- Unique color-confining LF Potential $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}$
- Superconformal Algebra: Mass Degenerate 4-Plet:

$$
\text { Meson } q \bar{q} \leftrightarrow \text { Baryon } q[q q] \leftrightarrow \text { Tetraquark }[q q][\bar{q} \bar{q}]
$$

Supersymmetric Features of Hadron Physics
from Superconformal Algebra and Light-Front Holography

- Polncarè Invariance: Physical predictions must be independent of the observer's Lorentz frame: Front Form
- Causality: Information within causal horizon: Front Form
- Gauge Invariance: Physical predictions of gauge theories must be independent of the choice of gauge
- Scheme-Independence: Physical predictions of renormalizable theories must be independent of the choice of the renormalization scheme Principle of Maximum Conformality (PMC)
- Mass-Scale Invariance:

Conformal Invariance of the Action (DAFF)

Stan Brodsky Bled Workshop

Supersymmetric Features of Hadron Physics
from Superconformal Algebra and Light-Front Holography

Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD

Matin Mojaza*
CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
Stanley J. Brodsky ${ }^{\dagger}$
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
Xing-Gang Wu ${ }^{\ddagger}$
Department of Physics, Chongqing University, Chongqing 401331, People's Republic of China (Received 13 January 2013; published 10 May 2013)
We introduce a generalization of the conventional renormalization schemes used in dimensional regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative QCD predictions, exposes the general pattern of nonconformal $\left\{\beta_{i}\right\}$ terms, and reveals a special degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the argument of the running coupling order by order in perturbative QCD in a form which can be readily automatized. The new method satisfies all of the principles of the renormalization group and eliminates an unnecessary source of systematic error.

Set multiple renormalization scales -Lensing, DGLAP, ERBL Evolution ...

Choose renormalization scheme; e.g. $\alpha_{s}^{R}\left(\mu_{R}^{\text {init }}\right)$

Choose $\mu_{R}^{i n i t}$; arbitrary initial renormalization scale

Result is independent of $\mu_{R}^{\text {init }}$ and scheme at fixed order

PMC/BLM

No renormalization scale ambiguity!
Result is independent of Renormalization scheme and initial scale!

QED Scale Setting at $\mathbf{N}_{\mathrm{C}}=\mathbf{o}$

Eliminates unnecessary systematic uncertainty

Scale fixed at each order

ס-Scheme automatically identifies β-terms!

Xing-Gang Wu, Matin Mojaza
Leonardo di Giustino, S才B

Stan Brodsky

芼 Kniversity of

Supersymmetric Features of Hadron Physics from Superconformal Algebra and Light-Front Holography

28 May 2020

Renormalization scale depends on the thrust Not constant !

T. Gehrmann, N. H'afliger, P. F. Monni

Principle of Maximum Conformality (PMC)

S.-Q.Wang, L. Di Giustino, X.-G.Wu, SJB

- Predictions are scheme-independent at every order
- Matches conformal series
- No n! Renormalon growth of pQCD series
- New scale appears at each order; n_{F} determined at each order - matches virtuality of quark loops
- Multiple Physical Scales Incorporated (Hoang, Kuhn, Tuebner, sjb)
- Rigorous: Satisfies all Renormalization Group Principles
- Realistic Estimate of Higher-Order Terms
- Reduces to standard QED scale $N_{C} \rightarrow 0$
- GUT: Must use the same scale setting procedure for QED, QCD
- Eliminates unnecessary theory error
- Maximal sensitivity to new physics
- Commensurate Scale Relations between observables: Generalized Crewther Relation (Kataev, Lu, Rathsman, sjb)
- PMC Reduces to BLM at NLO: Example: BFKL intercept (Fadin, Kim, Lipatov, Pivovarov, sjb)

Remarkable observation at HERA

10% to 15% of DIS
events are diffractive!

Fraction r of events with a large rapidity gap, $\eta_{\max }<1.5$, as a function of Q_{DA}^{2} for two ranges of x_{DA}. No acceptance corrections have been applied.
M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993)

QCD Mechanism for Rapidity Gaps

DDIS:
 Diffractive Deep Inelastic Scattering

90\% of proton momentum carried off by final state p' in 15% of events!
Gluon momentum fraction misidentified!
p^{\prime} is measured in DDIS but escapes detectation in DIS events

Simplified Description of DDIS from two-gluon Pomeron exchange in the LF framework
Five-quark Fock State + final-state interaction produces rapidity gap
Diffractive DIS Event: $\gamma^{*}+p_{|u d u Q \bar{Q}\rangle} \rightarrow p^{\prime}+X+($ rapgap $)$

Five-quark Fock state of proton: $\mid\{u d u\}_{8 C}\{Q \bar{Q}\}_{8 C}>$

Vanishing LF time between currents of virtual photons at large q^{2} : OPE!

> Forward Virtual Compton scattering for a DDIS event

Nonzero LF propagation time between virtual photons: No OPE!

$$
<p\left|J^{\mu}(x)\right| N><N\left|J^{\nu}(y)\right| p>,(x-y)^{2} \neq 0
$$

Cannot reduce to matrix element of local operator! No Sum Rules!

Liuti, Lubovitski, Schmidt, sjb

Color Confinement and Supersymmetric Features of Hadron Physics from Light-Front Holography and Novel Features of OCD from Light-Front Holography II

$|p>=| u[u d]>$ quark-diquark cluster
with Guy de Tèramond, Hans Günter Dosch, Alexandre Deur, Marina Nielsen, Ivan Schmidt,
F. Navarra, Jennifer Rittenhouse West, G. Miller, Keh-Fei Liu, Iianbo LIu, Liping Zou, S. Groote, Joshua Erlich, S. Koshkarev, Xing-Gang Wu, Sheng-Quan Wang, Cedric Lorcè, R. S. Sufian, R. Vogt, G. Lykasov, S. Gardner, S. Liuti, V. Lyubovitskij, L. di Giustino

Bled Workshop

What Comes
Beyond the Standard Models?

Talk II fuly 8, 202 I

[^0]: L. El Fassi et al. PLB 712,326 (2012)

[^1]: L. El Fassi et al. PLB 712,326 (2012)

